

August 22-25, 2009

Commercial Off-The-Shelf (COTS) Program

Methodology and Results of Upscreening Electronic

Parts - An Update

8-24-00

Mike Sandor, Shri Agarwal 4800 Oak Grove Drive Pasadena, CA 91109

Phone: (818) 354-0681 FAX: (818) 393-4559

JET PROPULSION LABORATORY Electronic Parts Engineering Office

AGENDA:

SUMMARY

ADVOCACY FOR COTS
DRAWBACKS WHEN IMPLEMENTING COTS
JPL COTS⁺⁺ CRITICAL SCREENING FLOW
JPL COTS⁺⁺ CRITICAL QUALIFICATION
COST & SCHEDULE TRADEOFFS
COTs++ Upscreening Results
C-SAM Update and Ongoing Work
COTS DPA Failures

8-24-00

JPL.

Advocacy for Using COTS(plastic packages):

- 1. State of-the-art parts are mostly available as COTS
- 2. COTS plastic parts performance capabilities continue to increase (e.g. processing power & high density memories)

- 3. COTS plastic parts enable reduction of hardware weight and volume Patrospace Publicate
- 4. COTS plastic parts initial acquisition cost is less than ceramic
- 5. COTS plastic parts have been reported to demonstrate good to excellent reliability in commercial and aerospace applications
- 6. Often they are the only option when Grade 1 is not offered or available

8-24-00

3

JET PROPULSION LABORATORY Electronic Parts Engineering Office

Drawback to COTS Implementation (plastic paci

- 1. Upscreening cost is coupled to the following influences and therefore cannot be tightly controlled (no standard exists)
 - Finding suitable test expertise
 - Minimum quantities often dictate cost
 - Manufactures unwillingness to upscreen
 - Costs of ownership depends on risk accepted
- 2. Upscreening schedules can jeopardize project schedules unless
 - Flows and processes are in writing & approved
 - Engineering/QA help is available daily
 - Vendor commits to screening schedule
 - Material in-process status is monitored weekly
- 3. Risk is not totally eliminated with upscreening

8-24-00

Rad Hard Assurance Varies from the same processing lot

Radiation Assurance has little statistical confidence

TID response depends on process-

"Positive" process changes can reduce radiation tolerance

SEE depends on circuit design and dimensions-

Commercial vendor can change these without notice

No good way of predicting radiation response without extensive testing-

Exception is a controlled Rad Hard process line

Radiation risk mitigation techniques are often required-\$\$\$

8-24-00

COTS	+ PEM U	pscreen	Impact	on Ris	k Mitig	gatio

	Amplifier	ADC	DC-DC Conv.	Reg.	
Narrow Temp.Range for Commercial Grade	1	1	3	9	
Plastic Assembly Quality	3	9	9	1	
Lot Non- Uniformity & Traceability	1	9	3	3	
Adequacy of Vendors Testing	1	9	3	9	
Infant Mortality	1	9	1	9	
Die Construction and Quality	1	1	1	1	
Total Score	8	38	20	31 Uinh	
COTS** Impact on Lowering Risk	Low	Higl	n High	High	
Fallout	4%	65%	26%	25%	

8-24-00 Risk mitigation weighting factors used: Minimum = 1, Moderate = 3, Significant = 9

JET PROPULSION LABORATORY Electronic Parts Engineering Office

CO15 Opscreening Rejects by Part Type & Vendor							
	Amplifier-	A ADC-B	ADC2-B	DC-DC ConC	Voltage C-A	S.Regulator-B	
DPA:	0/4	1/8	TBD	0/4	0/4	0/4	
Incoming	g: 0/78	n/a	4/79	1/78	0/80	8/80	
C-SAM	3/78	38/78	9/75	16/77	5/80	0/80	
Temp Cyc	cle: 0/78	10/78	0/75	3/77	0/80	3/72	
Burn-In	0/78	3/68	0/75	0/74	0/80	9/69	
QCI:	0/10	0/10	TBD	0/10	0/10	0/10	
Total:	3/78	51/78	TBD	20/78	5/80	20/80	
JPL	8-24-00						14

Failure Mechanisms from PEM Delamination:

- Stress-induced passivation damage over the die surface
- Wire bond degradation due to shear displacement
- Accelerated metal corrosion
- Die attach adhesion
- Intermittent electricals at high temperature
- Popcorn cracking
- Die cracking

8-24-00

0.04.00

15

JET PROPULSION LABORATORY Electronic Parts Engineering Office

Ε

40%

Results are package/ vendor assembly dependent

Lot sizes range from 15-30 parts each.

8-24-00 JPL

Mini Circuit

(Acoustic Microscopy for NonHermetic Encapsulated Electronic Components)

Source: Sonoscan Inc.

17

JET PROPULSION LABORATORY Electronic Parts Engineering Office

A New Failure Characterization Study is Underway Utilizing Plastic Part C-SAM Rejects

Objectives:

- Identify C-SAM reject parts by criteria(s)
- Measure Material Properties including sonic test, IR, X-ray
- Apply extreme temperature cycle stresses
- Repeat Material Properties Measurements including C-SAM at different intervals
- · Identify all failure mechanisms and risk rate C-SAM rejects

JPL 8-24-00

A Failed Chip Scale Board Assembly is under investigation utilizing C-SAM inspection on components/board

Objectives:

- · Identify component delaminations
- · Identify board layer delaminations
- Make correlation to CSP package thermal cycle failures

- CTE Mismatch
- · Package Proximity and Location on Board
- Ball Bond Size and Location

JPL

Summary/Conclusions:

- The concerns/risks anticipated with using COTS PEMS can be reduced to acceptable medium risk levels using JPL upscreening.
- A part qualification plan has been added to JPL's existing screening flows to further insure the reliability of parts used by Projects when application requirements are different.
- Further investigations/studies are being conducted on individual components and board assemblies using C-SAM analysis. This information will provide more understanding of the correlation between delamination and component/ board failure mechanisms.

8-24-00

PL `